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Abstract

A pentachlorophenol (PCP)-imprinted polymer (MIP) was obtained by thermal polymerization of a mixture of template, 4-vinylpyridine
and ethylene glycol dimethacrylate with molar ratio 1+ 3 + 27, using as porogenic solvent methanol–water (3+ 1 (v/v)). The polymer was
packed in an HPLC column and selectivity towards 52 PCP-related phenols (22-chloro-, 21-alkyl-, 4-aryl-, 3-methoxy- and 6-polyphenols)
was measured using acetonitrile–acetic acid (99+ 1 (v/v)) as mobile phase. The same was made for a reference polymer obtained without
pentachlorophenol (NIP). The molecular recognition properties of the imprinted polymer were expressed in terms of selectivity index (SI),
calculated for each phenol askNIP/kMIP. Sixteen molecular descriptors were calculated for each molecule: qO, the partial charge of the phenolic
oxygen atom; qH, the partial charge of the phenolic hydrogen atom;�q, the absolute value of the difference qO− qH; HOMO, the highest
occupied molecular orbital; LUMO, the lowest unoccupied molecular orbital;�orb, absolute value of the difference HOMO− LUMO; µ2,
the square of total dipole moment; MW, the molecular weight; SAS, the solvent-accessible molecular surface area; hSAS, the hydrophobic
solvent-accessible molecular surface area; Svdw, the van der Waals molecular surface area; hSvdw, the hydrophobic part of Svdw; MOv,
the molecular ovality; RG, the radius of gyration; logP, the logarithm ofn-octanol–water partition coefficient; pK, the phenolic dissociation
constant. Correlations between selectivity index and these descriptors were searched utilizing multivariate principal component analysis
(PCA). The multivariate model obtained by regression on the principal components correlate collectively several of the calculated descriptors
with the polymer selectivity. The magnitude of the model’s parameters shows that selectivity is strongly influenced by molecular descriptors
having structural character, such as MW, hSvdw and logP, while the effect of molecular descriptors having electronic character, such as qO
and pK, is much less marked.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The binding selectivity of a molecularly imprinted poly-
mer can be related to the spatial orientation of functional
monomers around the template during the polymerization
process. In fact, the number and type of functional groups in
a template molecule (i.e. carboxy, hydroxy, amido, amino,
etc.) able to form non-covalent interactions with functional
monomers conditionate not only the strength of the result-
ing molecular recognition, but also the possibility to bind
efficiently other molecules related to the template[1]. As
significative examples, methacrylic acid-co-ethylene glycol
dimethacrylate polymers imprinted withl-phenylalanine
derivatives shown an increasing enantiomeric selectiv-
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ity when template changed froml-phenylalanine ethyl
ester—able to establish only an ion-pair interaction between
the carboxylate and the amine and a weak hydrogen bond be-
tween the carboxyl and the ethyl ester—tol-phenylalanine
ethyl amide and tol-phenylalanine anilide—able to estab-
lish the same kind of ion-pair interaction and a strong cyclic
hydrogen bond between the carboxyl and the amide[2]. In
a work on molecular imprinting of several peracetylated
phenylgalactosides, it was shown that the presence of an
amino function on the aglycon part of the template strongly
influenced the polymer selectivity adding an additional
interaction with the polymer[3]. Again, a large study on
acrylamide-co-ethylene glycol dimethacrylate polymers im-
printed with several protected amino acids, shown that ma-
terials imprinted withl-tyrosine derivatives better rebound
the related template thanl-phenylalanine derivatives, as
effect of the presence of an additional interaction between
the phenolic hydroxyl and the binding cavity[4].

1570-0232/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jchromb.2004.01.037



32 C. Baggiani et al. / J. Chromatogr. B 804 (2004) 31–41

It should be considered that all the reported examples
are based on templates characterized by complex molec-
ular structures, able to raise strong molecular recognition
effects in an imprinted polymer on the basis of multiple
non-covalent interactions. When template complexity de-
creases, multiple interactions are less frequent and the poly-
mer selectivity should be based mainly on shape similarity
between the template and the related molecules. As example,
different porogenic solvents such as benzene, toluene and
xylenes produce imprinted polymers able to recognize with
a certain degree of selectivity the related solvent[5], while
polymers imprinted with chlorinated phenoxyacids shown
molecular recognition properties directly related to position
of the chlorine atoms on the aromatic rings[6].

Even if such templates have simple structures, in the
molecular recognition process it is difficult to clearly dis-
criminate between the steric contribute due to the shape of
the template, and the contribute due to the non-covalent
interaction between template and functional monomer.
Very few systematic studies are reported in literature. As
a significative example, a recent study on the resolution
of enantiomeric pairs of substituted chiral amines revealed
that steric and spatial interactions markedly influenced the
molecular recognition properties of molecularly imprinted
polymers in a quite predictable manner[7].

Recently, several papers have been published describing
the successful application as solid phase extraction materi-
als of molecular imprinted polymers obtained using as tem-
plates very simple molecule such as phenols, and a certain
degree of selectivity has been shown[8–11]. Thus, it is of
practical interest to understand how simple template struc-
ture such as phenols are able to conditionate the molecular
recognition properties of the resulting imprinted polymers,
and if the resulting selectivity could be controlled, increased
or decreased by a careful choice of the pre-polymerization
mixture.

In this work, we put our attention on molecular imprint-
ing of the dangerous pollutant pentachlorophenol (PCP), a
toxic substance largely diffused in many environments. In
an effort to better understand the influence of the template
structure on the selectivity of a PCP-imprinted polymer
and obtain insights into the mechanisms governing the
chromatographic separation mechanism, we used quanti-
tative structure–retention relationship (QSRR) analysis to
correlate the chromatographic retention behavior of several
related phenols to structural molecular parameters deter-
mined by molecular mechanics or semi-empirical quantum
chemical techniques. QSRR analysis was chosen because it
is a useful technique capable of relating chromatographic
retention behavior to the chemical structure of a solute.
In addition, it can facilitate insight into the mechanisms
governing chromatographic separation. In fact, by regres-
sion analysis, QSRR correlates retention parameters with
structural properties of molecules, either determined from
experiment or computed from molecular mechanics or
semi-empirical quantum chemical techniques.

Structural molecular parameters useful for QSRR were
selected and evaluated using principal component analy-
sis (PCA) combined with principal component regression
(PCR). The main advantage of this technique is to repre-
sent in an economic way the location of them objects in
a reduced coordinate system where instead ofn variables,
corresponding to the molecular descriptors, onlyp (with
p < n) usually can be used to describe the originalm × n

dataset with maximum possible information. The new vari-
ables are called principal components and they are given
by the linear combination of then real variables, which
coefficients are called “loadings”, while the new values
corresponding to each principal component for every object
are called “scores”. The relation between original dataset,
loading and scores is defined by the matricial equation:

X = TP′ + e

whereX is them× n matrix representing the dataset,T the
m × p matrix of the scores,P ′ then × p transposed matrix
of the loadings ande is them × n matrix of residuals.

Bi- or three-dimensional loadings plots give an indication
of the relative importance of the corresponding variables
in the principal components considered, while scores plots
are very useful as a display tool for examining the rela-
tionships between objects, looking for trends, grouping or
outliers. Moreover, PCA/PCR is preferable in comparison
with other possible approaches, such as multiple linear
regression (MLR), because it works well with the exper-
imental variables without to be affected by the presence
of non-orthogonal, i.e. correlated, molecular descriptors
[12,13].

2. Experimental

2.1. Materials

2,3,4,5,6-Pentachlorophenol (PCP), all others phenol
considered in this study, ethylene dimethacrylate and
4-vinylpiridine were from Sigma–Aldrich–Fluka (Milano,
Italy), all others reagents and organic solvents were supplied
by Merck (Darmstadt, Germany).

4-Vinylpyridine and ethylene glycol dimethacrylate were
distilled at reduced pressure immediately before use. Phe-
nol stock solutions were prepared by dissolving 20 mg of
substance in 20 ml of acetonitrile and stored in the dark at
−20◦C.

The HPLC apparatus (pump L-6200, UV-Vis detector
L-4200 and integrator D-2500) came from Hitachi–Merck
(Darmstadt, Germany).

2.2. Polymer preparation

In a 10 ml thick wall glass test tube a solution
was prepared by dissolving 0.200 g (0.751 mmoles)
of PCP into 4.0 ml of 3+ 1 ((v/v)) methanol–water.
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Then, 0.234 ml (2.25 mmoles) of 4-vinylpiridine, 3.83 ml
(20.28 mmoles) of ethylene glycol dimethacrylate and
0.040 g of 2,2′-azobis-(2-methylpropionitrile) were added.
The mixture was purged with nitrogen and sonicated in a
water-bath for 5 min. The vial was sealed, then the mixture
was left to polymerize overnight at 60◦C. The polymer ob-
tained was broken with a steel spatula, mechanically ground
in a mortar and wet-sieved to 30–90�m particle size.
The particulate was extensively washed with 9+ 1 (v/v)
methanol–acetic acid. No efforts were made to measure the
amount of template molecule recovered. A non-imprinted
polymer (NIP) was prepared and treated in the same man-
ner, omitting PCP.

2.3. Column packing

An adequate amount of polymer was suspended in a
1 + 1 (v/v) methanol–water mixture and the slurry packed
in a 100 mm stainless-steel HPLC column (i.d. 3.9 mm,
geometrical volume 1.19 cm3). The packing of the station-
ary phase was performed by gradually adding the slurry of
the polymer to the column and eluting it with the mobile
phase (1+ 1 (v/v) ethanol–water) at constant pressure of
10 MPa. The packed column was washed at 1 ml/min with
9+ 1 ((v/v)) ethanol–acetic acid until a stable baseline was
reached (280 nm). After equilibration, the pressure in the
column was of 2–5 MPa using organic solvents as a mobile
phase and at a flow rate of 1 ml/min.

2.4. Liquid chromatography

Columns were equilibrated at a flow rate of 1 ml/min with
40 ml of acetonitrile–acetic acid 99+ 1 (v/v). Then, 20�l
of stock solution of PCP (or related substance) diluted 1+9
(v/v) with acetonitrile were injected and eluted at 1 ml/min,
and the absorbance recorded at 280 nm. Each elution was re-
peated three times to assure the chromatogram reproducibil-
ity. Column void volume was measured by eluting 20�l of
acetone 0.05% (v/v) in acetonitrile.

The retention factor (k) was calculated as(t − tO)/tO,
wheret is the retention time of the eluted substance, andtO
the retention time corresponding to the column void volume.
The selectivity index (SI) is defined as an index of polymer
selectivity due to imprinting effects towards analogues of
the template molecule. It was calculated askNIP/kMIP.

2.5. Molecular descriptors

The geometries of 53 molecules (PCP and 52 related
phenols) were subjected to molecular modeling with
full geometry optimization (gradient were always less
than 0.05 kcal Å−1 mol−1) using semi-empirical quantum-
chemical method AM1 included in the HyperChem 5.01
package with the extension ChemPlus (HyperCube, Wa-
terloo, Canada). On the basis of the optimized geometries,
fourteen molecular descriptors related with electronic and
steric properties of the molecules were calculated. These

descriptors consist of the partial charge of the pheno-
lic oxygen atom (qO), the partial charge of the phenolic
hydrogen atom (qH), the absolute value of the differ-
ence of charge between the phenolic oxygen atom and
the phenolic hydrogen atom (�q), the highest occupied
molecular orbital (HOMO), the lowest unoccupied molec-
ular orbital (LUMO), the absolute value of the difference
between the highest occupied molecular orbital and the
lowest unoccupied molecular orbitals (�orb), the square
of total dipole moment (µ2), the molecular weight (MW),
the solvent-accessible molecular surface area (SAS), the
hydrophobic solvent-accessible molecular surface area
(hSAS), the van der Waals molecular surface area (Svdw),
the hydrophobic part of the van der Waals molecular surface
area (hSvdw), the molecular ovality (MOv, calculated from
the van der Waals molecular surface area and volume, in ac-
cording to[14]) and the radius of gyration (RG, calculated
from the moments of inertia). In addition, calculated values
for the logarithm ofn-octanol–water partition coefficient
(logP) and the phenolic dissociation constant (pK) were
obtained using ClogP (BioByte Corp., Pomona, California,
USA) and Sparc (http://www.ibmlc2.chem.uga.edu/sparc)
programs. Calculated molecular descriptors are reported in
Table 1.

2.6. Multivariate statistical analysis

Before to perform multivariate analysis, the initial dataset
(selectivity factor and molecular descriptors) was trans-
formed converting each single value in the Euclidean
distance calculated from the corresponding value for pen-
tachlorophenol. This type of scaling is justified by the
needs to compare how phenols are differently recognized
by the imprinted polymer respect to the template molecule.
Thus, the Euclidean scaling can be considered a measure of
similarity/dissimilarity, and it indicates how two object are
different (far) each other.

The transformed variables in the dataset were autoscaled,
mean-centered and subjected to multivariate analysis, that
was performed in Mathcad environment (Mathcad 2000,
MathSoft, Cambridge, MA, USA) using home-written PCA
and PCR routines based on the generalized inversion matrix
method[15].

Multivariate models were obtained by PCR utilizing iter-
atively a criterion involving the absolute correlation between
respective eigenvectors and dependent variables[16,17]. The
method used can be described as follows:

Step 1: All the principal components of them×n dataset
are calculated by using PCA.

Step 2: The principal component showing the highest ad-
justed regression coefficient (Radj) with the selectivity
factors is selected.

Step 3: From this best single-PC sub-set the best two-PC
sub-set is identified as the one providing the highestRadj
with the selectivity factors from all two-PC possible
combinations containing the best single-PC sub-set: the

http://www.ibmlc2.chem.uga.edu/sparc
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Table 1
Selectivity index (SI) and molecular descriptors calculated for 2,3,4,5,6-pentachlorophenol (entry #0) and 52 related phenols (entries #1 to #52)

Phenols SI qO qH �q HOMO LUMO �orb µ2 MW SAS hSAS Svdw hSvdw MOv RG logP pK

0 2,3,4,5,6-Pentachlorophenol 0.247−0.205 0.209 0.414 −0.789 −9.136 8.347 1.219 270.7 352.7 315.7 193.7 175.3 7.1 5.305 5.12 4.50
1 Phenol 0.781 −0.228 0.196 0.424 −0.291 −9.175 8.884 1.304 95.9 255.8 206.6 124.3 104.5 11.4 3.333 1.46 9.99
2 2-Chlorophenol 0.752 −0.221 0.203 0.424 −0.023 −9.210 9.188 0.446 128.7 276.4 234.1 139.1 120.3 9.5 3.838 2.15 8.56
3 3-Chlorophenol 0.752 −0.224 0.198 0.422 −0.023 −9.276 9.253 3.771 128.6 280.7 230.6 139.2 119.3 10.5 3.988 2.50 9.11
4 4-Chlorophenol 0.758 −0.224 0.198 0.422 0.049 −9.010 9.058 1.943 130.8 280.4 230.5 138.7 118.8 10.6 3.814 2.39 9.35
5 2,3-Dichlorophenol 0.800 −0.222 0.200 0.422 −0.185 −9.038 8.853 1.362 165.8 299.5 250.3 154.8 135.2 9.6 4.338 2.84 7.70
6 2,4-Dichlorophenol 0.690 −0.218 0.204 0.422 −0.243 −9.093 8.850 0.271 165.8 299.5 257.3 153.5 134.8 8.7 4.454 3.06 7.89
7 2,5-Dichlorophenol 0.690 −0.217 0.204 0.421 −0.315 −9.210 8.895 1.182 165.8 300.9 258.8 153.5 134.9 8.6 4.365 3.06 7.51
8 2,6-Dichlorophenol 0.690 −0.210 0.206 0.416 −0.247 −9.193 8.946 1.780 163.0 299.9 262.9 153.3 134.9 8.5 4.333 2.75 6.79
9 3,4-Dichlorophenol 0.685 −0.221 0.200 0.421 −0.217 −9.055 8.838 4.248 165.8 300.6 250.6 153.0 133.1 9.8 4.335 3.33 8.58
10 3,5-Dichlorophenol 0.621 −0.221 0.201 0.422 −0.271 −9.526 9.255 1.772 165.8 305.1 255.1 154.3 134.4 9.8 4.677 3.62 8.18
11 2,3,4-Trichlorophenol 0.671 −0.216 0.205 0.421 −0.411 −9.115 8.704 0.391 200.8 316.4 274.3 167.0 148.4 8.1 4.599 3.77 6.87
12 2,3,5-Trichlorophenol 0.552 −0.211 0.204 0.415 −0.469 −9.115 8.646 2.528 197.5 323.4 278.8 168.2 148.7 8.9 4.884 3.84 6.62
13 2,3,6-Trichlorophenol 0.546 −0.208 0.207 0.415 −0.486 −9.307 8.820 2.421 197.5 319.3 282.3 166.6 148.2 7.9 4.732 3.77 5.72
14 2,4,5-Trichlorophenol 0.575 −0.215 0.205 0.420 −0.488 −9.093 8.605 1.336 197.5 319.7 277.1 166.9 148.1 8.3 4.857 3.72 6.86
15 2,4,6-Trichlorophenol 0.575 −0.207 0.207 0.414 −0.442 −9.125 8.684 1.004 200.8 322.6 285.5 167.8 149.4 7.9 5.023 3.69 6.23
16 3,4,5-Trichlorophenol 0.559 −0.219 0.201 0.420 −0.395 −9.114 8.719 2.836 165.8 321.7 271.7 167.8 147.9 9.2 5.225 4.01 7.84
17 2,3,4,5-Tetrachlorophenol 0.391 −0.210 0.204 0.414 −0.584 −9.051 8.467 3.122 235.7 340.2 298.1 181.6 162.1 8.4 5.001 4.21 6.05
18 2,3,4,6-Tetrachlorophenol 0.571 −0.208 0.206 0.414 −0.625 −9.077 8.452 0.466 235.7 339.3 302.5 181.3 163.1 7.2 5.131 4.45 5.15
19 2,3,5,6-Tetrachlorophenol 0.420 −0.206 0.208 0.414 −0.682 −9.193 8.511 0.968 235.7 338.9 301.9 180.9 162.5 7.5 5.096 3.88 4.91
20 2-Chloro-5-methylphenol 0.662 −0.216 0.199 0.415 0.032 −8.909 8.941 4.982 145.3 309.5 265.0 158.1 138.6 9.2 4.158 2.90 8.38
21 4-Chloro-2-methylphenol 0.662 −0.223 0.198 0.421 0.079 −8.925 9.004 1.774 145.3 307.4 265.1 158.1 139.2 8.6 4.237 2.63 9.71
22 4-Chloro-3-methylphenol 0.725 −0.225 0.198 0.423 0.086 −8.937 9.023 2.332 145.3 305.3 255.3 156.3 136.4 9.5 4.174 3.10 9.55
23 2-Methylphenol (o-cresol) 0.775 −0.228 0.197 0.425 0.291 −9.036 9.327 0.808 110.4 283.1 240.4 144.0 124.9 9.4 3.689 1.95 10.30
24 3-Methylphenol (m-cresol) 0.730 −0.228 0.196 0.424 0.278 −9.115 9.394 0.857 110.4 285.3 235.9 143.5 123.7 10.0 3.784 1.96 10.09
25 4-Methylphenol (p-cresol) 0.775 −0.228 0.196 0.424 0.323 −8.953 9.276 1.388 110.4 285.5 235.5 142.8 122.9 10.2 3.691 1.94 10.26
26 2,3-Dimethylphenol 0.685 −0.235 0.201 0.436 0.291 −8.985 9.276 2.713 124.9 303.2 263.3 158.1 140.1 7.6 4.005 2.48 10.54
27 2,4-Dimethylphenol 0.952 −0.228 0.196 0.424 0.330 −8.844 9.175 0.960 124.9 311.6 268.9 163.8 144.7 8.7 4.070 2.30 10.26
28 2,5-Dimethylphenol 0.685 −0.227 0.196 0.423 0.304 −8.910 9.214 1.357 139.4 312.5 270.1 161.9 143.1 8.4 3.839 2.33 10.41
29 2,6-Dimethylphenol 0.694 −0.232 0.202 0.434 0.293 −8.963 9.256 1.402 124.9 307.7 274.3 160.8 143.6 7.0 3.992 2.36 10.62
30 3,4-Dimethylphenol 0.781 −0.228 0.195 0.423 0.329 −8.881 9.209 2.190 124.9 308.3 258.2 161.0 141.1 9.3 4.075 2.23 10.43
31 3,5-Dimethylphenol 0.714 −0.229 0.196 0.425 0.298 −9.037 9.335 1.464 124.9 314.2 264.3 162.8 143.0 9.3 4.225 2.35 10.19
32 2,3,5-Trimethylphenol 0.671 −0.228 0.196 0.424 0.308 −8.877 9.185 0.922 139.4 334.9 293.2 179.8 161.0 7.7 4.385 2.87 10.59
33 2,4,6-Trimethylphenol 0.671 −0.232 0.202 0.434 0.328 −8.776 9.104 1.367 139.4 336.6 303.2 179.3 162.1 6.5 4.385 2.73 10.9
34 2,3,5,6-Tetramethylphenol 0.592 −0.236 0.202 0.438 0.300 −8.812 9.111 1.407 153.9 351.7 319.4 194.6 177.7 5.8 4.566 3.32 10.85
35 2-Ethylphenol 0.730 −0.234 0.202 0.436 0.275 −9.079 9.354 1.910 124.8 305.5 267.4 159.3 141.0 7.9 4.058 2.47 10.20
36 3-Ethylphenol 0.730 −0.229 0.196 0.425 0.293 −9.107 9.400 0.830 124.8 310.9 340.3 162.0 142.4 9.1 4.157 2.4 10.12
37 4-Ethylphenol 0.730 −0.228 0.196 0.424 0.326 −9.010 9.336 1.423 124.8 310.4 260.8 164.9 144.8 9.5 4.075 2.58 10.21
38 2-Allylphenol 0.862 −0.229 0.198 0.427 0.279 −9.036 9.315 1.263 134.2 332.0 333.2 176.3 157.6 7.8 4.543 2.5 10.29
39 4-Tertbutylphenol 0.752 −0.227 0.196 0.423 0.347 −8.997 9.344 1.421 153.6 350.6 301.5 196.8 177.1 7.9 4.574 3.31 10.29
40 2-Phenylphenol 0.595 −0.218 0.195 0.413 0.128 −9.091 9.219 1.508 173.7 371.5 331.1 207.4 188.3 7.0 4.870 3.09 10.54
41 4-Phenylphenol 0.581 −0.225 0.197 0.422 −0.337 −8.642 8.306 1.243 173.7 368.3 319.2 200.3 180.6 7.7 4.964 3.2 9.58
42 1-Naphtol 0.671 −0.227 0.199 0.426 −0.357 −8.544 8.187 0.815 144.2 321.6 278.7 171.8 153.0 7.9 4.349 2.85 9.34
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process continues till all the principal components that
increase the model’s Radj are included.

Step 4: The partial regression coefficient are calculated
for all the variables of the model, and a new refined
m × (n − 1) dataset is obtained excluding the variable
with the lowest partial regression coefficient.

Step 5: The procedure is iterated to step 1 until the Radj
of the reduced model falls down the value of the Radj
for the full-variables model.

It should be noted that this approach was used because
of the more popular technique of principal component se-
lection based on the criterium of eigenvectors decreasing
magnitude [18] does not assure that eigenvectors highly
correlating with the dependent variables will be selected. In
fact, this approach could use eigenvectors irrelevant to the
prediction property of the model, but which best explain the
dataset variability. Thus, this kind of regression may yield
non-optimal solutions.

The leverage of the objects used to calculate the PCR
model was obtained considering the diagonal elements h of
the leverage matrix H (hat matrix) obtained by the following
relation:

H = X(X′X)−1X′

where X is the m × n matrix representing the dataset.

3. Results and discussion

The phenols chosen to study the selectivity of the
PCP-imprinted polymer were selected considering the na-
ture of their substituents. Apart from all the possible chlo-
rinated phenols, several simple alkylated phenols and a
restricted group of aryl-, methoxy- and polyphenols were
considered. Due to the difficulties to describe accurately
the ionization of carboxyl and amino groups with the avail-
able semi-empirical quantum-chemical methods, these kind
of molecules were excluded. The same was made for a
small number of nitro-substituted phenols, which showed
anomalous high retention times measured on the NIP col-
umn (kNIP > 3). This kind of selection was made in an
effort to take into the account a homogeneous set of data, in
which big changes in molecular structures will be limited.
In fact, it is unrealistic to describe correctly the multivariate
behavior of a set of data containing many different classes
of molecules (characterized by very different values for
the corresponding molecular descriptors) but with a limited
number of objects (m = 53).

From Fig. 1, it is clear that the PCP-imprinted column
shows a significative level of selectivity as direct effect of
the imprinting process. In fact, the point representing the
recognition of the template molecule PCP is quite isolated
and located in an area of the plot characterized by high val-
ues for kMIP. On the contrary, the main part of the phenols
crowd in a well defined part of the plot, corresponding to
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Fig. 1. Retention factors of phenols on the MIP column vs. NIP column.
Open circles: chlorophenols; open squares: alkylphenols; open triangles:
other phenols. The solid line indicates the area corresponding to the
absence of imprinting effect (kMIP = kNIP) for the interaction between
the stationary phase and a phenol.

low values for kMIP and kNIP. It should be noted anyway
that all the phenols, except few, show values of kMIP greater
than kNIP, i.e. that, for the considered system, the imprinting
process has a direct influence on its molecular recognition
properties. Chlorinated phenols are better recognized than
other phenols, and this fact could be interpreted in terms
of hydrophobic, steric or electronic (acidity) effects. Any-
way, some other phenols, characterized by bulky or mul-
tiple substituents (for instance: 2,3,5,6-tetramethylphenol,
2-phenylphenol, 4-phenylphenol) are well recognized any-
way. Of consequence, apart the apparent preference for the
chlorinated molecules, it is difficult to see any clear relation
between the nature of the phenols and the selectivity of the
imprinted polymer.

The situation does not change considering relations be-
tween selectivity index and molecular descriptors taken one
by one. When these univariate models are examined, selec-
tivity index does not show marked relationships with the
most part of molecular descriptors. In fact, except for MW
(r = 0.817) and log P (r = 0.851), reported in Fig. 2, the
other descriptors show poor correlation coefficients with the
selectivity factor. It should be stressed that MW and log P
are well correlated each other (r = 0.921) in the set of data
considered, and that for halogenated or alkylated phenols
hydrophobicity expressed as log P can be simply calculated
from steric descriptors such as molecular mass, solvent-
accessible surface or van der Waals surface with an good
level of precision [19,20]. Thus, the univariate analysis indi-
cates only a possible hydrophobic effect and it does not let
to obtain better informations on the nature of the molecular
recognition than a visual examination of the kMIP/kNIP plot.

Fig. 2. Plot of selectivity factor vs. log P. The parameter calculated for
the linear regression equation SI = −0.118 log P −1.014 were: coefficient
of correlation (R2) = 0.851, residual sum of squares (SSr) = 0.279,
standard error of estimate (s2) = 0.073. Open circles: chlorophenols;
open squares: alkylphenols; open triangles: other phenols.

3.1. Principal component analysis

As anticipated in the introduction, the dataset correspond-
ing to the molecular descriptors was examined using the
principal component analysis technique essentially to ob-
tain insights of the relative importance of the variables. It
should be considered that PCA does not consider the exis-
tence of dependent variables (the selectivity index), but oper-
ate on the independent variables (the molecular descriptors)
only.

For the principles on which PCA is based, a part of the
calculated variance should be attributed to noise, while a
reduced sub-set of principal components explains fully the
calculated variance due to the descriptors variability. In a
multivariate problem to know how many are the significative
principal components is of paramount importance when it is
necessary to discriminate what are the most useful descrip-
tors. This can be approached using many different methods,
calculating them directly from the eigenvalue distribution, or
using cross-validation techniques [21,22]. A good estimate
of the number of significative principal components can be
easily calculated using the so-called “K-correlation index”
[23]:

K :=
∑n

i=1

∣∣(Vi/
∑n

i=1Vi

) − (1/n)
∣∣

(2/n)(n − 1)
with 0 < K < 1

where n is the number of descriptors, and V the calculated
eigenvalues. The value of K, that is an estimate of how
much the descriptors are correlated each other, it is possi-
ble to calculate KL, the maximum number of potentially
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Table 2
Principal component analysis of the molecular descriptor dataset: eigenvalues greater than 0.001 and corresponding cumulative % of explained variance

Eigenvalues

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

Explained variance (eigenvalue size) 8.236 3.119 1.558 1.087 0.732 0.600 0.249 0.134 0.100 0.075 0.043
Cumulative % explained variance 51.4 71.0 80.7 87.5 92.1 95.8 97.4 98.2 98.8 99.3 99.6

significant principal components, and KP, the minimum
number of potentially significant principal components, as

KP = round[1 + (n − 1)(1 − K)] and

KL = round[n(1−K)]

where round is the greater of the nearest integer.
For the complete dataset of calculated molecular descrip-

tors the value for the K-correlation index is 0.667, corre-
sponding to a medium degree of correlation between de-
scriptors. The explained variance of the dataset is 95.8 and
80.7% when are considered the upper (KP = 6) and the
lower (KL = 3) limits (see Table 2). It should be noted
that the upper limit converge with the maximum signifi-
cant eigenvalue measured using the popular “scree plot” (see
Fig. 3). A PCA model involving only three principal compo-
nents has the advantage to be easily represented in a graph-
ical form utilizing three bi-dimensional scores and loadings
plots, without loss of information because more than 4/5 of
the molecular descriptors variability is retained.

Scores plot is reported in Fig. 4. Considering models
ranging from 1 to 6 principal components, for three objects
(numbered #48, 4-chlorocatechol, #49, 4-methylcatechol
and #52, 1,3,5-trihydroxybenzene). the statistical analysis
of the matrix of the residuals show that the residual variance
calculated for each object is greater than the residual vari-

Fig. 3. Principal component analysis of the molecular descriptor dataset:
scree plot for eigenvalues greater than 0.001 and corresponding cumulative
% of explained variance.

ance calculated for the entire dataset. Thus, these object can
be considered potential outlayers and prudently excluded
in the successive PCR analysis. It should be also noted
that objects are grouped in some sub-sets, corresponding to
chlorinated, alkyl/arylphenols and metoxy/polyphenols, and
that the chlorophenols subclass is well described by the first
principal component alone (i.e. it has a positive and constant
value for the second and third principal component), while
alkyl/aryl- and polyphenols are described collectively by all
the three principal components. Thus, a substantial differ-
ence between chlorinated and non-chlorinated phenols can
be seen, even if PCA alone do not let to see if such a differ-
ence could influence correlations between principal com-
ponents (i.e. molecular descriptors) and selectivity factors.

As regards the loadings (see Fig. 5), no molecular de-
scriptor shows very high (>0.6) or very low (<0.1) values
for the three first principal components taken together. Thus,
there are not any descriptors able to influence strongly the
model, while it is plausible that all these descriptors—or
a large part of them—are useful to account of the whole
dataset variability.

It is remarkable that in PC1 the main contribute is given
from steric molecular descriptors, such as MW, GR and
log P, while in PC2 and PC3 the main contribute is given
from electronic molecular descriptors, such as qO, qH, �q,
LUMO, µ2 e pK. Considering that PC1 accounts for more
than 50% of the dataset variability, this indicates that steric
descriptors play a more significant role to describe the
dataset properties than electronic molecular descriptors.

The close proximity in which SAS and Svdw are in the
loadings plot indicates that these descriptors show a marked
redundance, explaining the same dataset variability. Thus,
one of them could be deleted without affecting multivariate
model.

Considering models ranging from 1 to 6 principal com-
ponents, the statistical analysis of the residuals show that
a model including the principal components PC1–PC3 the
explained variance calculated for each variable (Fig. 6) is
greater for the steric than electronic molecular descriptors
(except for MOv), while to include variance depending from
electronic molecular descriptors it is necessary to expand
the model to five principal components, and variance ex-
plained by µ2 is included in a model with six principal com-
ponents only. Since PC1–PC3 principal components explain
4/5 of the molecular descriptors variability, this confirms that
steric descriptors play a more significant role to describe the
dataset properties. Anyway, the PCA cannot show if these
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Fig. 4. (a–c) Principal component analysis of the molecular descriptor dataset: scores plots. Open circles: chlorophenols; open squares: alkyl/arylphenols;
open triangles: other phenols. #48, #49 and #52 are outlayers.

descriptors better correlate collectively with selectivity fac-
tors. To do this it is necessary to consider the regression
made on principal components.

3.2. Principal component regression

A first-level principal component regression model was
calculated including all the molecular descriptors except
for SAS (highly correlated with Svdw through the co-
variance matrix) and excluding the outlayering objects
#48 (4-chlorocatechol) #49 (4-methylcatechol) and #52
(1,3,5-trihydroxybenzene).

Then, refined principal component regression models
with decreasing dimensionality (i.e. decreasing number
of molecular descriptors) were calculated till obtaining a
model with the same adjusted regression coefficient of the

first-level model, but with only seven residual variables
(Fig. 7). This model was named “minimum dimensionality
model” (MDM):

SI = 0.243 qO − 0.190 �q + 0.946 MW − 0.285 hSvdw

+ 0.255 MOv + 0.343 log P − 0.452 pK;
m = 50, n = 7, p = 6, Radj = 0.756, s2 = 0.255

The influence of single objects on the model is reported in the
leverage plot (Fig. 8). No objects can be considered strong
outlayers (|SIcalc − SIobs/s(1 − h)0.5| > 3), while only four
objects, numbered #40 (2-phenylphenol), #47 (catecol), #50
(1,3-dihydroxybenzene) and #51 (1,4-dihydroxybenzene),
show an high leverage (h > 3hmean) and can be considered
to have a strong influence on the model. Thus, MDM rep-
resents quite well the objects considered in this work. The
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Fig. 5. (a–c) Principal component analysis of the molecular descriptor dataset: loadings plots.

same it can be seen by the SIcalc versus SIobs plot (Fig. 9).
It should be noted that the distribution of the calculated
residuals is homoscedastic, thus the variance of the model
is distributed in a quite homogeneous form along all the
objects.

The most significative feature of the MDM is the high
numerical value for the MW parameter, twice bigger than
the second in magnitude, pK. Since all the variables were
mean-centered and autoscaled before of the multivariate
analysis, the high value of the MW parameter indicated
that steric factors are decisive to conditionate the molecular
recognition, an extent significantly greater than electronic
factors.

Related to the first, it is another significative feature:
the loss of the majority of electronic molecular descrip-
tor. In fact, the partial charge at phenolic hydrogen (qH),
orbital-related (HOMO, LUMO, �orb) and dipole-related
(µ2) descriptors are let fall, while are preserved the main

part of the structural molecular descriptors, such as MW,
hSvdw and MOv. Anyway, molecular descriptors referring
to hydrophobicity (log P) and acidity (pK) are preserved. It
makes sense because—as previously underlined—for substi-
tuted phenols MW and log P are strictly related, while it has
been shown that partial charge at phenolic oxygen and the pK
value are linearly correlated when partial charge is calculated
using AM1 or PM3 semi-empirical quantum-mechanical
methods [24].

As regards the algebraic sign of the MDM parameters, it
is interesting that a variable related to the molecular shape
(MOv) reinforces the effect of the biggest parameter in the
model, MW, while hSvdw—that take into the account the
hydrophobic fraction of the molecular surface—weakens
this effect. Thus, dimension and shape differences are deci-
sive to determine its recognition by the polymer, but change
in the hydrophobic part of the molecule can modify this.
As regards the effect of the algebraic sign on the electronic
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Fig. 6. Principal component analysis of the molecular descriptor dataset:
% of variance explained for each variables. (1) qO; (2) qH; (3) �q; (4)
HOMO; (5) LUMO; (6) �orb; (7) µ2; (8) MW; (9) SAS; (10) hSAS; (11)
Svdw; (12) hSvdw; (13) Mov; (14) RG; (15) log P; (16) pK. Open bars:
PC1–PC3 model. Forward diagonals bars: PC1-PC4 model. Backward
diagonals bars: PC1–PC5 model. Diagonal crossed bars: PC1–PC6 model.

parameters, it is remarkable that the positive sign for qO is
almost counterbalanced be the negative sign for �q. So, the
main significative electronic parameter became pK, which
has negative algebraic sign. Thus, its influence is opposed
to that of steric factors.

Considering the whole model in terms of polymer se-
lectivity index, it can be seen that steric and electronic
molecular descriptors have opposite effects on the molecu-
lar recognition of PCP-analogs: steric descriptors decrease
the recognition by enhancing the selectivity index, while
electronic descriptors increase the recognition—even if in a
lesser extent—by reducing the selectivity index.

Fig. 7. Principal component regression of the molecular descriptor dataset:
dimensionality of regression models. Dashed line indicates the value
corresponding to the adjusted regression coefficient for the 15-variables
model.

Fig. 8. Principal component regression of the reduced molecular descrip-
tor dataset: leverage plot. Open circles: chlorophenols; open squares:
alkylphenols; open triangles: other phenols.

Fig. 9. Principal component regression of the reduced molecular descrip-
tor dataset: calculated selectivity index vs. observed selectivity index
(mean-centered and autoscaled values). In the inset: differences between
observed and calculated selectivity index. Open circles: chlorophenols;
open squares: alkylphenols; open triangles: other phenols.

4. Conclusions

Correlate column selectivity with molecular descriptors
is difficult using the traditional statistical tools, because the
most part of these descriptors correlate each other, and this
make the use of multiple linear regression improper, if not
impraticable. The application of chemometric methods of
multivariate analysis such as principal component analysis
and principal component regression make it possible. The
results obtained in this work show that a polymer obtained
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by molecular imprinting with pentachlorophenol show a
pattern of selectivity towards several other related phenols
that can be rationalized in terms of steric and electronic
molecular descriptors.
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